
Kotahi:
a new approach to JATS production

Dan Visel, Coko · dbvisel@gmail.com
Adam Hyde, Coko
Ben Whitmore, Coko

1. An introduction to Kotahi

Basic features

¶ Multiple workflows

¶ Multiple review models

¶ Document editing

¶ Realtime updates & chat

¶ Flexible approach to metadata

Basic features, continued

¶ Single-source methodology

¶ Versioning

¶ Exporting (to PDF, JATS, HTML, others)

¶ Integrations (ORCID, Crossref, Hypothes.is)

¶ Reports

Current users

¶ eLife

¶ Amnet Systems

¶ JMIR

¶ Aperture Neuro

2. Background:
Coko & Kotahi’s infrastructure

The Coko Foundation

¶ The Coko Foundation, founded by Adam Hyde, makes
 publishing software

¶ Kotahi springs from Editoria, used to make books

Editoria’s book chooser

Editoria’s editor – based on Wax, similar to Kotahi

Coko frameworks used by Kotahi

¶ PubSweet, component library

¶ xSweet, DOCX to HTML conversion

¶ Wax, web-based editor

¶ Paged.js, HTML to PDF conversion

PubSweet’s homepage, documenting the component library

xSweet’s homepage

Wax’s documentation

Paged.js

Coko projects connected to Kotahi

¶ Flax, used as a web front end

¶ Science Beam, converts PDFs to JATS

¶ Libero Editor, another JATS editor, supported by Coko

The Flax-generated page for Aperture Neuro, pulling content out of Kotahi

3. Key concepts

Workflow

● Publishers have wildly different workflows
● Kotahi is designed to accommodate individualized

workflows
● Documents go through many states and travel from

person to person
● Kotahi tries to keep as much of that in one app as

possible

A workflow diagram for Kotahi in Aperture Neuro (design by Henrik van Leeuwen with Ryan Dix-Peek)

HTML as a source of truth

● Authors tend to use MS Word (or maybe Google Docs)
● We need to work around DOCX
● DOCX —> HTML can be done consistently (with xSweet)
● Editors, by and large, don’t think about structure.

Single-sourcing & the Kotahi model

● JATS is part of the workflow, not an endpoint
● A production editor is making JATS – but they’re not

necessarily a JATS expert
● Other people in the process could also be making JATS
● JATS might be updated

A typical publishing model

A single-source publishing model

4. Documents in Kotahi

The form: control for metadata

● Different points in the workflow need different kinds
of metadata

● Some go into a document
● Some are for workflow (e.g. who is going to review this

submission) and don’t end up as metadata
● Form could also include attachments (datasets,

original files)

A sample form in Kotahi

The Kotahi form builder: an instance can have multiple forms, each with their own fields

The field properties for a form: this is for a author’s input (first & last names, email, affiliation)

Wax: where editing happens

● Wax is used in both the regular editor and the
production editor

● Comments and changes are carried across
● JATS elements added in production are carried back

into the regular editor, so changes can still be made.

The general Wax editor in Kotahi, used by editors

5. Making JATS in the production
page

The production Wax editor

● Allows production editor to mark up pieces that need
to go into JATS front or back matter

● What editor sees should be close to what’s seen in the
final PDF/HTML version

● Inserted JATS elements are just HTML tags, so they can
go back and forth to the regular editor

The Wax editor on Kotahi production page, used by the production editor

Front matter and back matter elements in the production page editor’s drawer

In the upper right, a drop-down allows immediate download of HTML, PDF, and XML

Prepping for JATS

● Wax uses HTML, but it’s targeted at being converted to
JATS using a closed taxonomy of tags and classes

● Internally, everything is relatively flat, but we can take
structure implied through header and make a more
nested XML-y structure

How something might be structured in HTML – a flat structure

How that HTML is transformed into nested JATS tags

6. Exporting JATS

Where does the <front> come from?

<article-meta> comes from the form

<journal-meta> is set per instance

A sample form in Kotahi

Data from that form translated into a JATS front matter

Where does the <body> come from?

<body> comes from what the user sees in Wax – though
some front & back matter material might be extracted.

The start of a document in Kotahi. Notice that some is wrapped in a front matter element

How that’s represented internally as HTML

The start of that document turned into JATS. The front matter material is gone.

Where does the <back> come from?

<back> comes from specially tagged elements in Wax – and
possibly some elements from the form.

The end of a document in Kotahi. There’s an appendix and acknowledgments.

What that looks like as HTML internally. Pseudo-elements provide editorial hints via CSS

And those elements go into the <back> tag in JATS

Validation

● Exported JATS is validated both as XML and against the
JATS schema

● This is primarily valuable to developers: if Kotahi is
properly set up, it should not be possible to export
invalid JATS.

● This is because of the constrained approach to
functionality that Kotahi takes.

7. Expansion into the future

Towards a more WYSIWYG approach

● Metadata is currently in the form rather than the Wax
editor.

● Moving that content into Wax – in the form of
structured content – would allow editors to directly
edit metadata as it would appear in the printed
version.

Citations

● Kotahi’s citations are currently very simple
● A citation maker might be attached to allow

manipulation of citations

Math

● Math in Kotahi is currently MathJax
● Math is exported as SVGs and MathML
● Different clients seem to want different approaches

(so editors don’t need to know LaTex); a WYSIWYG
editor is a possibility

● MathJax supports mhchem for typesetting chemistry;
support could be included

Different ways of exporting

● Export is currently on demand
● More persistent PDF/JATS might be imagined
● Publication should automatically generate PDF/JATS

for different endpoints
● Figuring out how people want to consume the final

product

Making JATS friendly

● Kotahi doesn’t let you create invalid JATS
● Visually explaining to users why you can’t have two

<abstract> sections (for example) – on export to JATS,
only one of them will be there.

8. Conclusion

JATS for everyone

● Kotahi wants to let everyone create JATS without
necessarily knowing JATS

● A rising tide lifts all boats?

Thanks!

